スキップしてメイン コンテンツに移動

投稿

Thunderbirdで標準搭載されたPGPによる暗号化を利用する

電子メールクライアントのMozilla Thunderbird 78でやっとOpenPGPの機能が標準搭載された。 とはいっても、78.0.1ではまだ不完全で、78.1.0でほぼ完成したようだが、デフォルトではOpenPGPは使えない。今後リリース予定の78.2からデフォルトで動作するようになるらしい。 78.1.0で使うためには、「オプション」の「一般」の一番下の「設定エディター...」を開き、 mail.openpgp.enable を true にする必要がある。 ただし、設定をいじると動作保証対象外になるので、自己責任で対応すること。 今回の動作検証ではWindows 10上で実行させた 64ビット版Thunderbird 78.1.0 を使っている。 設定を済ませたら、「エンドツーエンド暗号化」のOpenPGPの「Add Key...」で秘密鍵をインポートもしくは作成する。 GnuPG などですでに鍵を作っているのであれば、それをエクスポートして読み込ませるだけだ。 公開鍵をインポートする場合、「OpenPGP Key Manager」の「Import Public Key From File」で対応可能だ。 早速、メールを作成し、「セキュリティ」から「暗号化が必要」と「このメッセージにデジタル署名」を選択して送信する。 メッセージは自分自身に送っているのであまり意味はないが、それぞれの機能がきちんと動作していることを確認することはできる。 この通り、暗号化とデジタル署名ができていることを確認できた。 PGPは昔からあるが、自分の周りでは使われているのをほとんど見たことがない。 Thunderbirdに標準搭載されたのを機に、広まってくれないだろうか。
最近の投稿

古典的で未来的な人にやさしい顔映像匿名化

現代では簡単に写真や動画を撮ることができる。それは、個人情報の流出と直結する。 特に動画に映った人物について、匿名化することはなかなかに大変だ。 目線やモザイク、塗りつぶしなどで顔を隠すケースをよく見かけるが、個人的にはちょっと微妙。犯罪臭がするし、淫靡な印象を与えてしまう。 ほかにもアイコンやシンボルで顔を隠したりすることができるツールなどもあるが、ちょっと自分好みではないし、何よりオリジナリティに欠ける。 そこで、古典的でもあり、未来的でもある、そして新しい、そんな顔映像匿名化を考えてみた。 匿名化するにあたって、まずは顔、特に目と鼻を検出できなくてはならない。 幸いなことに、 Keypoint R-CNN モデルを使えばそれが可能になる。 利用するだけならば、PyTorchのチュートリアルレベルの知識を持っていれば十分。 そして、コードはできるだけシンプルで分かりやすく、その場ですぐに書けてしまえることが重要だ。 これは大事なことで、たとえ面白そうな技術でも、それを体験できるまでに時間がかかれば多くの人は興味を失ってしまう。 体験して理解さえすれば、達成感と面白さを実感できるし、次を目指す動機づけになる。 閑話休題。さて、今回作るのは、動画の顔画像の匿名化だ。そして、古典的で未来的、何のことだと思われるかもしれないが、使っている技術は新しく、できたものは懐かしいということ。 具体的には、顔画像に細工をして「へのへのもへじ」にしてしまうのだ。とはいっても、目と鼻を置き換えるだけなので「のもの」を使う。 江戸時代中期にはよく知られていたという「へのへのもへじ」は、まさに古典的で懐かしいと言えるだろう。 作成したコードは foota / nomono-anonymizer にある。使い方は次の通り。 $ python nomono-anonymizer.py [入力動画ファイル名] [出力動画ファイル名] 動画はフレームごとに画像データとして処理され、それを事前学習した Keypoint R-CNN のモデルに推論をさせる。 モデルは画像データに対し人物領域を検出し、それに対して目、鼻、耳、肩、肘など、17のキーポイントを推定する。 今回は、右目・左目・鼻の3つのキーポイントを利用し、取得した座標に対して、画像データ上に「のもの」の文字

人工知能が見ている世界

今の世の中、そこら中に人工知能(AI)と呼ばれるシステムがあふれている。特にディープラーニングによるニューラルネットワークモデルを使ったシステムは高度な処理が可能であると広く考えられているようだ。では、それを使ったAIはどのようにこの世界を見ているのだろうか。 ディープラーニングで得られる特徴を含んだ値(特徴マップ)がAIの視覚と呼べるだろう。AIについて扱った教材では、ディープラーニングにより学習されたニューラルネットワークモデルの特徴マップを例示していることがあるが、特定の画像に対する特定の特徴の一部を載せているだけなので、AIがどのように世界を見ているのか、それだけで判断するのは難しい。 そこで、任意の動画に対してニューラルネットワークモデルを使って特徴マップを映像化することにした。今回、対象とするネットワークアーキテクチャは、 AlexNet と VGG19 だ。それぞれ2012年と2014に公表されており、どちらのアーキテクチャも ImageNet の分類できわめて高い性能を誇っている。 特徴マップの映像化を行うにあたって、まずは動画処理のために ffmpeg-python を利用することにした。これは、名前からもわかるようにPythonのFFmpegラッパーで、動画を扱うのにはかなり便利なライブラリとなっている。次に、AlexNetとVGG19を利用するために PyTorch とそのパッケージである torchvision を利用した。torchvisionにはAlexNetとVGG19の学習済みネットワークモデルも用意されている。使い方は簡単で、例えばAlexNetなら、以下のコードでネットワークモデルをすぐに使うことができる。 model = torchvision.models.alexnet(pretrained=True) 今回は学習をせず用意されているモデルを使うだけなので、推論モードにして勾配計算をしないように model.eval() と torch.set_grad_enabled(False) を記述しておく。 処理の流れは次の通り。入力データとして適当な動画ファイルを用意する。動画ファイルが読み込まれると、ffmpegによりフレーム画像を一枚ずつ読み出し、それをnumpyで配列に変換。変換され

12年前の非接触型ICカードリーダPaSoRiで遊ぶ

最近ずっとリモートワークだったので、これを機に書斎の整理整頓を行った。段ボールに無造作に放り込まれたPC関連機器や電子ガジェットを漁っていると、2004年10月に発売されたソニーの非接触型ICカードリーダPaSoRi RC-S320が出てきた。2008年3月に購入したので実に12年以上前のモノだ。 このまま捨て置くのは勿体ないし、ちょっと興味をそそられたので、 以前のブログ記事 に上げた コード がちゃんと使えるか、最近新調したWindows 10搭載PCで確認してみた。 当然、ドライバが入っていないのでそのままでは動かない。早速最新のドライバを入れようと思ったが、実はRC-S320はとっくに販売終了していて、新しいPaSoRiとはドライバが違う。まあ、そりゃそうか。調べたところ古いドライバ( NFCポートソフトウェア Version 5.4.8.6 )を落としてくれば動くことが分かった。動作確認環境はWindows 8.1までみたいだけど、まあ、大丈夫でしょ。 ドライバを入れたところ、デバイスマネージャーでちゃんと認識された。よし、これで準備OKだ。動かしてみよう! …いやまてよ? 今時Python2は許されない。ということでPython3のコードにちょこちょこっと修正して、これで良し。PaSoRiの上にモバイルSuica機能を搭載したAndroid端末を置いて、さっそく実行 python read_felica.py (カタカタカタッターン!) OSError: [WinError 193] %1 は有効な Win32 アプリケーションではありません。 あ、これよく見るやつだ。実行パス名にスペースとか入ってちゃんと認識しないやつだ。と思ったけど調べてみるとパス名は問題ないみたい。あとは、そうそう、64ビット環境で32ビットのライブラリ使ったとか。それだ! 実行環境はPython3の64ビット版なので読み込むDLLも64ビットじゃないと。でも、利用させてもらった felicalib は32ビット版しかないみたい。 0.4.3から64ビット版にも対応する みたいだけど、最新版の0.4.2が2008年6月リリースでそれ以降出ていないということはもう出ない可能性が高い。ちなみにソニーのドライバは当時64ビット版が存在しなかったみたいだけど、今

PythonでSlackのボットを作成する

職場でSlackを利用している。なかなか使いやすいし便利だ。しかし、技術者としては与えられた機能を利用するだけではやはり満足できない。自分好みの道具を作りたい。 というわけで、単なるチャットツールとして使うSlackでは物足りなくなったので、Slackのボット(bot)をPythonで作ってみることにした。Hubotのようなボット用フレームワークも利用可能だが、SlackのAPIをガシガシ制御する感じにしたかったので、 Slack Real Time Messaging API をPythonから制御してSlackと連携した。今回は、書き込んだ数字を素因数分解するボットを作ってみた。 まずは、Slack用のボットを利用する準備をする。 Slack API にアクセスして、 Bot users をクリックし、Custom bot usersにある creating a new bot user のリンクからBotsのページを開く。 名前(ここでは @prime_decomposition)を入力したらAdd bot integrationボタンをクリックする。 Integration Settingsの画面ではAPI Tokenが表示されており、ボットのスクリプトでこれを利用する。あとは好みに応じてアイコンの変更やボットの説明を記述しておく。今回のボットでは、デフォルトのフェイスマークに用意してあるロボットのアイコンを使い、説明文は「素因数分解をするよ!」とした。あとは、Save Integrationのボタンをクリックして設定を保存する。 ボットの準備ができたら、それをSlackへメンバーとして加える。ボットを参加させたいチャンネル(ここの画像では #general だが #random に参加させたい場合は #random を選択すること)のChannel Settings(歯車のアイコン)から、Invite team members to join...を選択する。先ほど設定したボットがメンバーとして表示されているのでそれを選ぶ。これで下準備は完了だ。 次にPythonを使ってボット用スクリプトを作成する。目的は、Slack上で誰かが数字を書き込んだ際に、それを取得して素因数分解をすること。そのためには、Slackに書き

Android端末をサーバにしてPyramidフレームワークを利用する

しばらく前に、PythonのWebフレームワークである Pyramid を利用した。これがなかなか良くできており、Android端末上でも動かしてみたくなったので載せてみた。 ところで、自分が利用しているキャリアはドコモなんだけど、 spモード だとグローバルIPが割り振られないので外部から端末にアクセスできない。なので、spモードを契約せずに、 mopera U を利用している。mopera UであればグローバルIPが割り振られるのでアクセスすることができるからだ。このためだけに、spモードにせず、mopera Uにしていると言っても過言ではない。 閑話休題。まず、Pyramidを動作させるにはAndroid端末用のPython環境である SL4A を入れる必要がある。次にPyramidを入れるのだが、必要なモジュールなどが複数あるのでそれも一緒に入れる。一応、Hello Worldプログラムを動かすのに必要なものはすべて挙げたが、もし足りない場合は実行時に何が足りないかエラー表示が出るので、それを参考に入れて欲しい。また、 Android SDK が導入されていることを前提にしている。 まず、Android端末にシェルで入ってプログラムを展開するディレクトリを準備する。環境に合わせてディレクトリは読み替えて欲しい。 > adb shell * daemon not running. starting it now on port 5037 * * daemon started successfully * $ cd /sdcard/sl4a/scripts $ mkdir pyramid $ exit 適当なディレクトリで以下のプログラム・モジュールをPC側で展開する。 pyramid-master.zip translationstring-1.3.tar.gz venusian-1.0.tar.gz WebOb-1.4.tar.gz zope.deprecation-4.1.2.tar.gz zope.interface-4.1.2.tar.gz repoze.lru-0.6.tar.gz PC側からAndroid端末にプログラム・モジュールをコピーする。 > adb push pyramid /

IRCボットの作成

久々のブログ更新。書きたいときに書くというスタンスです。最近、会社でも技術ブログを立ち上げたので、そちらで書いても良いかも。 今回はIRCボットの作成について書いてみる。しばらく前から社内IRCで技術関連の雑談用チャンネルを利用している。技術系のメーリングリストもあるのだけど、わざわざメールで話題にするようなことでもない、軽い内容を気軽に議論できる場が欲しかったので有志で立ち上げた。IT企業にとって技術的な雑談をできる場はとても大事だと思う。 素のIRCの場合、発言内容がサーバに保存されず、途中から参加しても話題についていけないという問題が出たので、適当なボットで対応することにしたが、やはりエンジニアがメインの会社なのだからボットも自作が基本でしょ、ということでPythonで作ってみた。まあ、作ったといっても「 Python でシンプルな IRC クライアントを作成する 」のサイトを参考にさせてもらったのでスクラッチから作成したわけではない。 コマンド techlog: を入れると、その日の発言がボットからのtalkで返される。ただ、最初は1日分の発言しか取れない仕様だったので、日を跨ぐとその前の発言が取得できないし、一時的にチャットを抜けた分のログが欲しいだけでも強制的に1日分の発言を取得してしまう。 そこで、SQLite3を使ってユーザ毎にログイン・ログアウト時刻を管理して、ログアウトしてからログインするまでの発言を取得できるように変更することにした。新規に参加したメンバーでも自動的にデータベースに登録される。せっかくユーザの時刻情報があるのだから、 techtime: , techtimeall: というコマンドを作って、それぞれ自分の滞在時間、ユーザ全員分の滞在時間も取得できるようにしてみた。 IRCサーバ上で以下のコマンドを実行すると、IRCにボットが常駐する。 $ ./irc_bot.py > irc_bot.log & ソースコードは以下の通り。 そこそこ社内IRCも使えるようになったのだが、最近、別プロジェクトで利用を始めた Slack がかなり便利だったので、そこに技術系チャンネルを作ったところ、ほとんどのメンバーがSlackに流れてしまった…。次は Slackでボット作成 かなぁ。