2013年を終え、2014年を迎えた。さて、昨年と今年の違いは何か?
昨年のブログで2013を素因数分解すると「3×11×61」になることを示したが、2014は「2×19×53」となる。そして差を取ると、「2-3, 19-11, 53-61」、つまり、「-1, 8, -8」となり、1月、8月が昨年と今年の差であることがわかる。そして、負を示した1月は運気が下がり、正と負を持つ8月は運気の上下があるに違いない! 因みに2013+2014=4027が素数にあることから、昨年から今年にかけて行っていることは、これまでとは違ったユニークな内容となる!
…などと、MMRばりなことを書けるぐらいの余裕を持ちつつ、今年一年を頑張りたいと思いますので、本年もどうぞよろしくお願いいたします。
以下にPython+NZMATHを使った素因数分解を示す。
>>> import nzmath.factor.methods as methods >>> methods.factor(2013) [(3, 1), (11, 1), (61, 1)] >>> methods.factor(2014) [(2, 1), (19, 1), (53, 1)] >>> methods.factor(2013+2014) [(4027, 1)]
昨年のブログで2013を素因数分解すると「3×11×61」になることを示したが、2014は「2×19×53」となる。そして差を取ると、「2-3, 19-11, 53-61」、つまり、「-1, 8, -8」となり、1月、8月が昨年と今年の差であることがわかる。そして、負を示した1月は運気が下がり、正と負を持つ8月は運気の上下があるに違いない! 因みに2013+2014=4027が素数にあることから、昨年から今年にかけて行っていることは、これまでとは違ったユニークな内容となる!
…などと、MMRばりなことを書けるぐらいの余裕を持ちつつ、今年一年を頑張りたいと思いますので、本年もどうぞよろしくお願いいたします。
以下にPython+NZMATHを使った素因数分解を示す。
>>> import nzmath.factor.methods as methods >>> methods.factor(2013) [(3, 1), (11, 1), (61, 1)] >>> methods.factor(2014) [(2, 1), (19, 1), (53, 1)] >>> methods.factor(2013+2014) [(4027, 1)]
コメント
今日ワイプアウトで初めて脳汁出ました。